Déplacez le point $T$ pour afficher la trace du point $Q$ et conjecturez l'expression de la dérivée attendue. Modifiez l'expression de $f$.
Très très fortement inspiré de Derivatives and Tangent Lines
Code:
Min X = <input name="LowXField" size="5" type="text" value="-1" /> Max X = <input name="HighXField" size="5" type="text" value="9" /> Min Y = <input name="LowYField" size="5" type="text" value="-2" /> Max Y = <input name="HighYField" size="5" type="text" value="5" /> <input onclick="setView()" type="button" value="Afficher la fenêtre" /></form>
<form name="TForm" onsubmit="setT('T'); return false;">
Abscisse de T: <input name="setTfield" onchange="setT('T');" size="5" type="text" /></form>
<form name="functionForm" onsubmit="setFunction('T'); return false;">
f(x) = <input name="setFunctionField" onchange="setFunction('T');" size="30" type="text" value="x^2/6-2x+4" /> dérivéeattendue(x) = <input name="setDerivativeField" onchange="setFunction('T');" size="30" type="text" value="x/4" />
<input onclick="setFunction('T');" type="button" value="Afficher f(x) et f'(x) " />
</form>
<script type="text/javascript">
function setView() {
var applet = document.ggbApplet;
var LowX = document.MyForm.LowXField.value;
var HighX = document.MyForm.HighXField.value;
var LowY = document.MyForm.LowYField.value;
var HighY = document.MyForm.HighYField.value;
applet.setCoordSystem(LowX, HighX, LowY, HighY);
}
function setT(objName) {
var applet = document.ggbApplet;
var x= document.TForm.setTfield.value;
applet.evalCommand("t2=f("+x+")");
var y = applet.getValue("t2");
applet.evalCommand(objName + " = (" + x + ", " + y + ")");
}
function setFunction(objName) {
var applet = document.ggbApplet;
var x= document.functionForm.setFunctionField.value;
applet.evalCommand("f(x)="+x);
var y= document.functionForm.setDerivativeField.value;
applet.evalCommand("dérivéeattendue(x)="+y);
}
</script>
Aucun commentaire:
Enregistrer un commentaire