dimanche 31 octobre 2010

GeoGebra et la peinture





De nombreuses autres animations ( pages en espagnol)


Le théorème de Viviani


Le théorème: Dans un triangle équilatéral, la somme des distances d'un point intérieur au triangle aux trois côtés est égale à la hauteur du triangle.



Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.5 (or later) is installed and active in your browser (Click here to install Java now)


Tiré du site de Manuel Sada Allo. Les fichiers sont téléchargeables en bas de page.


jeudi 28 octobre 2010

Exercice 23: La Sicile



Tutoriels utilisés : 4,5,8,10.

GoogleMaps dispose d'un outil de mesure des distances. Cette fonctionnalité permet de réaliser des calculs métriques sur une carte géographique.




Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)







Votre réponse:







lundi 25 octobre 2010

Exercice 22 : Le basket


Tutoriels utilisés : 2,4,5,10,11.


Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.5 (or later) is installed and active in your browser (Click here to install Java now)


Idée provenant d'ICI

Vidéos stroboscopiques  associées: lancer raté, lancé réussi, demi lancer

Coordonnées du ballon:

`x(t)=V_0cos(alpha)t`
`y(t)=-1/2gt^2 +V_0sin(alpha)t+y_0`

samedi 23 octobre 2010

Les différences



Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.5 (or later) is installed and active in your browser (Click here to install Java now)


mardi 12 octobre 2010

Exercice 21: Module et argument d'un nombre complexe



Tutoriels utilisés: 8,11


Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.5 (or later) is installed and active in your browser (Click here to install Java now)


X(M): Y(M):

Module de Z: Argument de Z:


Exercice 20: Barycentre de 3 points et associativité


Tutoriel utilisé: 2


Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.5 (or later) is installed and active in your browser (Click here to install Java now)

lundi 11 octobre 2010

Grapheur


Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.5 (or later) is installed and active in your browser (Click here to install Java now)


Min X = Max X = Min Y = Max Y =
f(x) =

dimanche 10 octobre 2010

Tutoriel Javascript 8: Conjecturer une fonction dérivée



Déplacez le point $T$ pour afficher la trace du point $Q$ et conjecturez l'expression de la dérivée attendue. Modifiez l'expression de $f$.



Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.5 (or later) is installed and active in your browser (Click here to install Java now)


Min X = Max X = Min Y = Max Y =

Abscisse de T:

f(x) = dérivéeattendue(x) =





Très très fortement inspiré de Derivatives and Tangent Lines

Code:

<form name="MyForm">
Min X = <input name="LowXField" size="5" type="text" value="-1" /> Max X = <input name="HighXField" size="5" type="text" value="9" /> Min Y = <input name="LowYField" size="5" type="text" value="-2" /> Max Y = <input name="HighYField" size="5" type="text" value="5" />   <input onclick="setView()" type="button" value="Afficher la fenêtre" /></form>

<form name="TForm" onsubmit="setT('T');  return false;">
Abscisse de T: <input name="setTfield" onchange="setT('T');" size="5" type="text" /></form>

<form name="functionForm" onsubmit="setFunction('T');  return false;">
f(x) = <input name="setFunctionField" onchange="setFunction('T');" size="30" type="text" value="x^2/6-2x+4" /> dérivéeattendue(x) = <input name="setDerivativeField" onchange="setFunction('T');" size="30" type="text" value="x/4" />

<input onclick="setFunction('T');" type="button" value="Afficher f(x) et f'(x) " />
</form>

<script type="text/javascript">

 function setView() {
  var applet = document.ggbApplet;
  var LowX = document.MyForm.LowXField.value;
  var HighX = document.MyForm.HighXField.value;
  var LowY = document.MyForm.LowYField.value;
  var HighY = document.MyForm.HighYField.value;

  applet.setCoordSystem(LowX, HighX, LowY, HighY);
 }

function setT(objName) {
  var applet = document.ggbApplet;
  var x= document.TForm.setTfield.value;
  applet.evalCommand("t2=f("+x+")");
  var y = applet.getValue("t2");
  applet.evalCommand(objName + " = (" + x + ", " + y + ")");
}
function setFunction(objName) {
  var applet = document.ggbApplet;
  var x= document.functionForm.setFunctionField.value;
  applet.evalCommand("f(x)="+x);
  var y= document.functionForm.setDerivativeField.value;
  applet.evalCommand("dérivéeattendue(x)="+y);
}




</script>

samedi 9 octobre 2010

Exercice 19 : Le limaçon de Pascal


Tutoriels utilisés : 2,7.




Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.5 (or later) is installed and active in your browser (Click here to install Java now)

lundi 4 octobre 2010

Tutoriel Javascript 7: Intégrale de Riemann





Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.5 (or later) is installed and active in your browser (Click here to install Java now)



X Min = X Max = Y Min = Y Max =


f(x)=


f(x)=


Paramètres de la somme: a = b = Nombre de rectangles n =




Source : http://webspace.ship.edu/msrenault/tutorial/Tutorial%207%20-%20Incorporating%20JavaScript.html

Code:


<form name="MyForm">
 Min X = <input name="LowXField" size="5" value="-1" type="text">
 Max X = <input name="HighXField" size="5" value="9" type="text">
 Min Y = <input name="LowYField" size="5" value="-2" type="text">
 Max Y = <input name="HighYField" size="5" value="5" type="text">
 <input value="Afficher la fenêtre" onclick="setView()" type="button">
<p>
 
 f(x) = <input name="FunctionField" size="30" value=" "> 
 <input value="Graphique" onclick="setFunction()" type="button">  
 <p>
 
 f(x) = <select name="ExampleSelect"> 
  <option value="">Exemples</option>
  <option value="sin(2 x) - 1 / 10 x^2 + 3">sin(2 x) - 1 / 10 x^2 + 3</option>
  <option value="2 + cos(x/2)">2 + cos(x/2)</option>
<option value="x^2 / 20">x^2 / 20</option>
  <option value="ln(x)">ln(x)</option>
  <option value="sqrt(x)">sqrt(x)</option>
  <option value="cbrt(x)">cbrt(x)</option>
  </select>
 <input value="Charger l'exemple" onclick="exampleLoader()" type="button"> 
 <p>
Paramètres de la somme: a = <input name="A" size="5" value="1" type="text">
     b = <input name="B" size="5" value="7" type="text">
    Nombre de rectangles n = <input name="N" size="5" value="12" type="text">
 <input value="Valider" onclick="setRiemann()" type="button">

</form>


<script type="text/javascript">
 function setView() {
  var applet = document.ggbApplet;
  var LowX = document.MyForm.LowXField.value;
  var HighX = document.MyForm.HighXField.value;
  var LowY = document.MyForm.LowYField.value;
  var HighY = document.MyForm.HighYField.value;

  applet.setCoordSystem(LowX, HighX, LowY, HighY);
 }

 function setFunction() {
  var applet = document.ggbApplet;
  var func = "f(x) = " + document.MyForm.FunctionField.value;
  applet.evalCommand(func);
 }

 function exampleLoader() {
  var func = document.MyForm.ExampleSelect.value;
  if (func != "") {
   document.MyForm.FunctionField.value = func;
   setFunction();
  }
 }
 
 function setRiemann() {
  var applet = document.ggbApplet;
  var a = document.MyForm.A.value
  var b = document.MyForm.B.value
  var n = document.MyForm.N.value
  
  applet.evalCommand("a = " + a);
  applet.evalCommand("b = " + b);
  applet.evalCommand("n = " + n);
 }
 
</script>